Protein denaturation at a single-molecule level: the effect of nonpolar environments and its implications on the unfolding mechanism by proteases.
نویسندگان
چکیده
Most proteins are typically folded into predetermined three-dimensional structures in the aqueous cellular environment. However, proteins can be exposed to a nonpolar environment under certain conditions, such as inside the central cavity of chaperones and unfoldases during protein degradation. It remains unclear how folded proteins behave when moved from an aqueous solvent to a nonpolar one. Here, we employed single-molecule atomic force microscopy and molecular dynamics (MD) simulations to investigate the structural and mechanical variations of a polyprotein, I278, during the change from a polar to a nonpolar environment. We found that the polyprotein was unfolded into an unstructured polypeptide spontaneously when pulled into nonpolar solvents. This finding was corroborated by MD simulations where I27 was dragged from water into a nonpolar solvent, revealing details of the unfolding process at the water/nonpolar solvent interface. These results highlight the importance of water in maintaining folding stability, and provide insights into the response of folded proteins to local hydrophobic environments.
منابع مشابه
The pressure dependence of hydrophobic interactions is consistent with the observed pressure denaturation of proteins (protein foldingyprotein folding kineticsyhydrophobic effectyactivation volumesyprotein unfolding)
Proteins can be denatured by pressures of a few hundred MPa. This finding apparently contradicts the most widely used model of protein stability, where the formation of a hydrophobic core drives protein folding. The pressure denaturation puzzle is resolved by focusing on the pressure-dependent transfer of water into the protein interior, in contrast to the transfer of nonpolar residues into wat...
متن کاملFunctionalization of the Single-walled Carbon Nanotubes by Sulfur Dioxide and Electric Field Effect, a Theoretical Study on the Mechanism
In this study, kinetics and mechanism of the sulfur dioxide adsorption on the single-walled carbon nanotubes (CNT) are investigated. Three single-walled carbon nanotubes, including the armchair (6,6), chiral (6,5) and zigzag (6,0) CNTs were chosen as the models and the different orientations of SO2 molecule relative to the CNT axis were considered. The B3LYP functional within the 6-3...
متن کاملEffect of pH on Structural Properties of Heat-Induced Whey Protein Gels
Formation and structure of whey protein heat-induced gels (100 mg mL-1) through heat treatment at 80 °C and pH modifications at three pH values of acidic (2), isoelectric (5.6) and neutral (7) were studied. The obtained results indicated that the nature of the primary gel networks was different at each pH value. The heat-induced gels produced at pH of 2 and 7, had acceptab...
متن کاملHow Do Palladium Complexes Affect on Coil Structure of Human Serum Albumin in the Presence of Carbon Nanotube? A Molecular Dynamics Study
To investigate the interaction and adsorption of drug and carbon nanotube on human serum albumin, three anti-cancer drugs ([Pd(phen)(R-gly)]NO3, R = methyl, propyl and amyl) with different hydrophobic tails and anticancer activities were selected. These drugs have better anti-tumor activity and less side effects than that known cis-platinum drug. Human serum albumin is also ...
متن کاملSlow Proton Transfer Coupled to Unfolding Explains the Puzzling Results of Single-Molecule Experiments on BBL, a Paradigmatic Downhill Folding Protein
A battery of thermodynamic, kinetic, and structural approaches has indicated that the small α-helical protein BBL folds-unfolds via the one-state downhill scenario. Yet, single-molecule fluorescence spectroscopy offers a more conflicting view. Single-molecule experiments at pH 6 show a unique half-unfolded conformational ensemble at mid denaturation, whereas other experiments performed at highe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nanoscale
دوره 7 7 شماره
صفحات -
تاریخ انتشار 2015